## Synthesis of Tricarbonylcyclobuta[/]phenanthreneiron

By Takuji Miyamoto,* Souichi Tanaka, and Yoshinobu Odaira, Department of Petroleum Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka, Japan
1.2-Dichloro-1.2.2a.10b-tetrahydrocyclobuta[/]phenanthrene (II) was prepared both by photocycloaddition of phenanthrene to trans-dichloroethylene and by dichlorobisdecarboxylation of the 1.2 -dicarboxylic acid (III) derived by hydrolysis of the photoadduct of phenanthrene with dimethyl maleate. Reaction of the dichloride (II) with $N$-bromosuccinimide, followed by chromatography on alumina. gave 1.2-dichloro-1.2-dihydrocyclobuta[/]phenanthrene (IV). Treatment of the product (IV) with enneacarbonyldi-iron afforded tricarbonylcyclobuta[/]phenanthreneiron (V). Oxidative decomposition of compound (V) with cerium(IV) ion in the presence of cyclopentadiene gave the endo-adduct (VI).

Some stable metal complexes of cyclobutadienes ${ }^{1}$ as well as of benzocyclobutene ${ }^{2}$ have been synthesised recently. While much attention is being devoted to the higher aromatic analogues of benzocyclobutene, ${ }^{3}$ little is known about the chemistry of cyclobuta $[l]$ phenanthrenes, though the 1,2 -diphenyl derivative is postulated as an unstable intermediate. ${ }^{4}$ We report here the synthesis of the tricarbonyliron complex (V) (see Scheme).
$\dagger$ Tentative stereochemical assignments for three stereoisomers (IIa), (IIb), and (IIc) are as follows; (IIa) cis,trans,trans-, (IIb) cis,cis,cis-, (IIc) cis,trans,cis-.
${ }^{1}$ P. M. Maitlis, Adv. Organometallic Chem., 1966, 4, 95; P. M. Maitlis and K. W. Eberius, ' Nonbenzenoid Aromatics,' ed. J. P. Sny'der, vol. 2, p. 360.

The dichloro-compound (II) was prepared by two methods. The first involved the photocycloaddition of phenanthrene (I) to trans-dichloroethylene, ${ }^{5}$ and gave a mixture of three stereoisomers. $\dagger$ In the second, irradiation of phenanthrene with dimethyl maleate yielded the cycloadduct, which on hydrolysis gave the

[^0]dicarboxylic acid (III). Dichlorobisdecarboxylation with lead tetra-acetate and lithium chloride (modified


(I)

procedure for halogenodecarboxylation of monocarboxylic acids described by Kochi ${ }^{6}$ ) then gave compound (II).

Reaction of the dichloride (II) with $N$-bromosuccinimide in the presence of dibenzoyl peroxide in carbon tetrachloride under reflux, followed by chromatography on alumina, gave 1,2-dichloro-1,2-dihydrocyclobuta[l] phenanthrene (IV), identified by its n.m.r. and u.v. spectra $\{\tau 1 \cdot 30-1.65(2 \mathrm{H})$, typical of the 4 - and 5 -protons of a phenanthrene ring (phenanthrene itself ${ }^{7}$ shows $\tau 1.35$ ); u.v. spectrum similar to that reported ${ }^{8}$ for cyclobuta[l]phenanthrene $\}$.

Treatment of compound (IV) with enneacarbonyl-di-iron in n-hexane at $50^{\circ}$ for 3 h afforded the tricarbonyliron complex (V) (32\%), which showed characteristic carbonyl absorptions at 2050 and $1960 \mathrm{~cm}^{-1}$ and n.m.r. signals at $\tau 1.50-1.70(2 \mathrm{H}, \mathrm{m}), 2.35-2.65(6 \mathrm{H}, \mathrm{m})$, and $5 \cdot 55(2 \mathrm{H}, \mathrm{s})$.

Oxidative decomposition of the complex (V) with

[^1]cerium(Iv) ion in the presence of cyclopentadiene gave the endo-adduct (VI). The n.m.r. and u.v. spectra showed the presence of phenanthrene ring system, which indicates that addition took place at the 1 - and 2 positions of cyclobuta[l]phenanthrene. The adduct (VI) was assigned the cndo-configuration in the light of comparison of its n.m.r. spectrum with those ${ }^{9}$ of endo- and exo-tetracyclo[8,2,1, $\left.0^{2,9}, 0^{3,8}\right]$ trideca- $3,5,7,11$ tetraene.

## EXPERIMENTAL

I.r. spectra were measured for potassium bromide discs with a JASCO IR-G spectrophotometer. N.m.r. spectra were recorded for $5 \%$ solutions in deuteriochloroform with tetramethylsilane as internal standard, unless otherwise stated, on a JEOL JNM-3H-60 spectrometer. U.v. spectra were taken for solutions in ethanol on a Hitachi-PerkinElmer UV-VIS spectrophotometer. Mass spectroscopic analyses were performed with a Hitachi RMU-6E spectrometer. Petroleum refers to the fraction of b.p. $30-60^{\circ}$.

Photocycloaddition of Phenanthrene to trans-Dichloro-ethylene.-A solution of phenanthrene ( 17.8 g ) and transdichloroethylene ( 48.5 g ) in ether ( 100 ml ) was irradiated in a Pyrex vessel with a 500 W high-pressure mercury lamp under nitrogen at room temperature for 120 h . The ether and unchanged dichloroethylene were removed by distillation. The residue was chromatographed on alumina. Elution with petroleum gave 1,2-dichloro-1,2,2a,10b-tetrahydrocyclobuta[1]phenanthrene consisting of three stereoisomers. Fractional recrystallisation from ethanol gave isomer (IIa) ( 4.6 g ), isomer (IIb) ( 5.2 g ), and isomer (IIc) $(0.1 \mathrm{~g})$. Isomer (IIa) had m.p. $145-160^{\circ}$ (decomp.), $\tau 1.90-2.30(2 \mathrm{H}, \mathrm{m}$, aromatic), $2.50-2.95(6 \mathrm{H}, \mathrm{m}$, aromatic), and $5.00-6.55(4 \mathrm{H}, \mathrm{m}$, methine) (Found: C, $69.55 ; \mathrm{H}, 4.25 \% ; M^{+}, 274 . \quad \mathrm{C}_{16} \mathrm{H}_{12} \mathrm{Cl}_{2}$ requires $\mathrm{C}, 69 \cdot 85$; $\mathrm{H}, 4.4 \%$; $M^{+}, 274$ ). Isomer (IIb) had m.p. 161.5-163 ${ }^{\circ}$, $\tau 2.00-2.30(2 \mathrm{H}, \mathrm{m}$, aromatic), $2.50-2.90(6 \mathrm{H}, \mathrm{m}$, aromatic), and $5.35-6.05(4 \mathrm{H}, \mathrm{m}$, methine) (Found: C, $69 \cdot 85 ; \mathrm{H}, 4.5 \%$; $M^{+}, 274$ ). Isomer (IIc) had m.p. $190^{\circ}$ (decomp.), $\tau\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1 \cdot 85-2 \cdot 15(2 \mathrm{H}, \mathrm{m}$, aromatic), $2 \cdot 55-3.00(6 \mathrm{H}, \mathrm{m}$, aromatic), $4.55-4.75(2 \mathrm{H}, \mathrm{m}$, methine), and $5.60-5.80(2 \mathrm{H}, \mathrm{m}$, methine) (Found: C, $69.95 ; \mathrm{H}$, $4 \cdot 25 \%$; $\left.M^{+}, 274\right)$.

Photocycloaddition of Phenanthrene to Dimethyl Maleate.A solution of phenanthrene ( $\mathbf{1 7 . 8} \mathrm{g}$ ) and dimethyl maleate $(43.2 \mathrm{~g})$ in ether ( 150 ml ) was irradiated under similar conditions. Distillation under reduced pressure gave dimethyl 1,2,2a,10b-tetrahydrocyclobuta[1]phenanthrene-1,2dicarboxylate, b.p. $175-205^{\circ}$ at $5.3 \times 10^{-4} \mathrm{mmHg}(27.3 \mathrm{~g})$, which crystallised from benzene-petroleum as plates, m.p. 104-112 ${ }^{\circ}, v_{\text {max. }} 1725 \mathrm{~cm}^{-1}\left(\mathrm{CO}_{2} \mathrm{Me}\right), \tau 2 \cdot 10-2.55(2 \mathrm{H}, \mathrm{m}$, aromatic), $2 \cdot 80-3.20(6 \mathrm{H}, \mathrm{m}$, aromatic), and $5 \cdot 80-6.90$ $\left(10 \mathrm{H}, \mathrm{m}\right.$, methine and methyl), $\lambda_{\max } 242,273,279$, and $310 \mathrm{~nm}(\log \varepsilon 4 \cdot 01,4 \cdot 18,4 \cdot 19$, and $3 \cdot 39$ ) (Found: C, 74.3; $\mathrm{H}, 5 \cdot 5 \%$; $M^{+}, 322 . \quad \mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{4}$ requires C, $74.5 ; \mathrm{H}, 5 \cdot 65 \%$; $\left.M^{+}, 322\right)$.

Hydrolysis of the Diester.-The diester ( 5 g ) was heated under reflux with aqueous $20 \%$ sodium hydroxide ( 60 ml ) for 8 h . The resulting solid was filtered off and treated with hydrochloric acid to give the dicarboxylic acid (III) $(3.4 \mathrm{~g}), \mathrm{m} . \mathrm{p} .245-250^{\circ}$ (decomp.) (from acetone), $\nu_{\max }$
${ }^{8}$ J. P. Anhalt, E. W. Fricnd, and E. H. White, J. Org. Chem., 1972, 37, 1015.
${ }_{9}$ H. E. Simmons, J. Amer. Chem. Soc., 1961, 83, 1651.
$1690 \mathrm{~cm}^{-1}\left(\mathrm{CO}_{2} \mathrm{H}\right)$ (Found: C, $73.65 ; \mathrm{H}, 5 \cdot 1 \% ; M^{+}, 294$. $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{4}$ requires C, $73 \cdot 45 ; \mathrm{H}, 4.8 \%$; $M^{+}, 294$ ).

Dichlorobisdecarboxylation of the Dicarboxylic Acid (III).A suspension of the acid (III) ( $1 \cdot 1 \mathrm{~g}$ ), lead tetra-acetate $(4.2 \mathrm{~g})$, and lithium chloride ( 0.4 g ) in acetonitrile ( 40 ml ) was refluxed for 1 h , then filtered and evaporated. The residue was chromatographed on silica gel. Elution with benzene gave the dichloro-compound (II) ( 120 mg ).

Reaction of Compound (II) with N-Bromosuccinimide.Compound (IIa) ( 1.65 g ) was dissolved in carbon tetrachloride ( 50 ml ) and $N$-bromosuccinimide ( $4 \cdot 3 \mathrm{~g}$ ) and a few crystals of dibenzoyl peroxide were added. The mixture was refluxed for 1.5 h and filtered; the filtrate was washed with aqueous sodium thiosulphate and then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solvent was distilled off and the residue was chromatographed on alumina. Elution with petroleum gave 1,2-dichloro-1,2-dihydrocyclobuta[1]phenanthrene (IV) ( 1.06 g ), needles, m.p. $126.5-127^{\circ}$ (from ethanol), $\tau 1 \cdot 30$ $1.65(2 \mathrm{H}, \mathrm{m}$, aromatic), $2.00-2.65(6 \mathrm{H}, \mathrm{m}$, aromatic), and $4.43\left(2 \mathrm{H}, \mathrm{s}\right.$, methine), $\lambda_{\text {max }} 247,255,265 \mathrm{sh}, 279,288$, and $301 \mathrm{~nm}(\log \varepsilon 4.67,4.79,4 \cdot 36,4.03,3.99$, and 4.03 ) (Found: $\mathrm{C}, 70 \cdot 35 ; \mathrm{H}, \mathbf{3 . 4 5} \%$; $M^{+}, 272 . \mathrm{C}_{16} \mathrm{H}_{10} \mathrm{Cl}_{2}$ requires $\mathrm{C}, 70 \cdot 35$; H, $3 \cdot 7 \%$; $M^{+}, 272$ ).

Reaction of Compound (IV) with Enneacarbonyldi-iron.A mixture of compound (IV) ( 3.55 g ) and enneacarbonyldiiron ( 14.7 g ) in n-hexane ( 150 ml ) was heated with stirring at ca. $50^{\circ}$ for 3 h . The reddish-brown solid was filtered off and washed with benzene. Filtrate and washings were combined and chromatographed on alumina. Elution with
benzene gave tricarbonylcyclobuta[1]phenanthreneiron (V), ( 1.44 g ), yellow needles, m.p. $200^{\circ}$ (decomp.), $v_{\text {max }} 2050$ and $1960 \mathrm{~cm}^{-1}(\mathrm{CO}), \tau 1 \cdot 50-1.70(2 \mathrm{H}, \mathrm{m}$, aromatic), $2 \cdot 35-2.65$ ( $6 \mathrm{H}, \mathrm{m}$, aromatic), and $5.55(2 \mathrm{H}, \mathrm{s}$, ring protons) [Found: $\mathrm{C}, 66.6 ; \mathrm{H}, 3.0 . \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Fe}(\mathrm{CO})_{3}$ requires C , 66.7 ; H , $2.95 \%$ ]. The complex (V) is sensitive to light in solution; therefore the entire procedure was carried out in semidarkness.

Oxidative Decomposition of the Complex (V) with Cerium(Iv) Ion in the Presence of Cyclopentadiene.-Cerium(Iv) ammonium nitrate ( 5 g ) was added in portions to an icecooled solution of the complex (V) ( 706 mg ) and cyclopentadiene ( 0.18 ml ) in acetone ( 25 ml ). Stirring was continued for an additional 30 min after which the mixture was poured into brine. The solution was extracted with benzene and the combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The residue was chromatographed on alumina. Elution with petroleum gave 8c,9,12,12a-tetrahydro-endo-9,12-methanobenzo[3,4]cyclobuta-$[1,2-1]$ phenanthrene (VI) ( 176 mg ), plates, m.p. $132-133.5^{\circ}$ (from n-hexane), $\tau\left(\mathrm{CCl}_{4}\right) 1.35-1.70(2 \mathrm{H}, \mathrm{m}$, aromatic), $2.35-2.80(6 \mathrm{H}, \mathrm{m}$, aromatic), $4.55-4.70(2 \mathrm{H}, \mathrm{t}$, vinylic), $6 \cdot 16-6.30(2 \mathrm{H}, \mathrm{m}$, benzylic), $6.80-7.15(2 \mathrm{H}, \mathrm{m}$, bridgehead), $7 \cdot 85-8 \cdot 10(1 \mathrm{H}, \mathrm{m}$, methine), and $8 \cdot 15-8.40(1 \mathrm{H}$, m , methine), $\lambda_{\text {max. }} 250 \mathrm{sh}, 256,273,282,295$, and 306 nm ( $\log \varepsilon 4.65,4.72,4.23,3.83,3.85$, and 3.94 ) (Found: C, $94.0 ; \mathrm{H}, 5.95 \%$; $M^{+}, 268 . \mathrm{C}_{21} \mathrm{H}_{16}$ requries $\mathrm{C}, 94.0 ; \mathrm{H}$, $6.0 \%$; $\left.M^{+}, 268\right)$.
[2/2007 Received, 24th August, 1972]


[^0]:    ${ }^{2}$ G. F. Emerson, L. Watts, and R. Pettit, J. Amer. Chem. Soc., 1965, 87, 131.
    ${ }^{3}$ M. P. Cava, B. Hwang, and J. P. Van Meter, J. Amer. Chem. Soc., 1963, 85, 4032; M. P. Cava and B. Hwang, Tetrahedron Letters, 1965, 2297; M. P. Cava, Chem. Soc. Special Publ., No. 21, 1967, p. 175.
    ${ }^{4}$ M. P. Cava and D. Mangold, Tetrahedron Letters, 1964, 1751.
    ${ }^{5}$ T. Miyamoto, T. Mori, and Y. Odaira, Chem. Comm., 1970, 1598.

[^1]:    ${ }^{6}$ J. K. Kochi, J. Amer. Chem. Soc., 1965, 87, 2500; J. Org. Chem., 1965, 30, 3265.

    7 R. C. Fahey and G. C. Graham, J. Phys. Chem., 1965, 69, 4417; T. J. Batterham, L. Tsai, and H. Ziffer, Austral. J. Chem., 1964, '7, 163; P. M. G. Barin, K. D. Bartle, and J. A. S. Smith, Tetrahedron, 1965, 21, 1087.

